Urban Agricultural Land Revitalization and the Creation of Edible Parks Toward Sustainable Urban Development

Document Type : Review Article

Authors

1 PhD Student in Urban and Regional Planning, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

2 Associate Professor, Department of Urban and Regional Planning, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

Abstract

Introduction
Rapid population growth and environmental degradation pose significant social and ecological challenges for cities worldwide. The global population is projected to reach 9 billion by 2050, placing increasing pressure on urban systems. Cities are confronting multifaceted challenges, including climate change, social segregation, biodiversity loss, and the absence of healthy, environmentally sustainable food systems. In response, the concept of sustainable urban development has emerged as a holistic framework to address these interconnected issues by integrating environmental, social, and economic dimensions. Sustainable development science emphasizes inclusive participation, engaging non-experts in addressing complex, multidimensional urban problems. One promising strategy is the revitalization of urban agricultural lands through innovative, community-driven approaches. Urban sustainability and growth strategies can thus serve as critical pathways toward resilience, fostering cross-disciplinary collaboration and empowering communities to co-create solutions.
 
Findings
Urban agriculture encompasses the cultivation of crops and rearing of livestock within urban and suburban areas, reinforcing the interdependence between urban and rural systems. It responds to diverse food demands, supports various business models, and carries significant social and environmental implications in terms of costs, benefits, and funding mechanisms. This study considers food production across urban and peri-urban landscapes in all its forms, without categorical distinction.
Nature-based solutions (NbS) represent innovative approaches for sustainable urban transformation. These strategies enhance urban resilience without necessarily altering the physical fabric of cities, instead optimizing existing structures through ecological integration. By expanding urban green initiatives—from small-scale interventions such as green roofs and indoor farming to large-scale green spaces—nature-based projects can transform urban lifestyles and foster sustainable community development.
Edible parks, as a form of nature-based solution, utilize both public and private spaces to build sustainable urban infrastructure and redefine the function of urban open spaces. They promote social interaction, strengthen community bonds, and contribute to the creation of vibrant urban ecosystems. Urban food production often relies on simple, low-tech methods with minimal infrastructure, making it accessible and scalable. Productive green spaces not only enhance food security but also improve environmental quality, stimulate local economies, and provide recreational and aesthetic benefits.
The edible park model directly addresses pressing urban challenges, including climate change adaptation, biodiversity conservation, and global food system vulnerabilities. By embedding productive landscapes into the urban fabric, edible parks foster biophilic design principles, creating distinctive, identity-rich environments that reconnect residents with nature. In cities rich with opportunities for ecological restoration, these spaces enable citizens to experience the wonder and regenerative potential of the natural world.
As a key model of urban landscape innovation, edible cities play a vital role in advancing ecological sustainability and reconstructing urban green infrastructure—including the rehabilitation of underutilized or degraded agricultural lands. In cities like Tabriz, where nature-based solutions are gaining momentum, edible parks can generate sustainable employment and income opportunities for local communities. Thoughtful, context-sensitive design of these spaces is essential to maximizing their functional efficiency and enhancing overall urban sustainability.
 
Discussion and Conclusion
Urban agriculture has gained growing public and institutional attention as cities seek resilient, adaptive infrastructure solutions. This domain includes a wide range of practices led by diverse stakeholders—such as community gardens, allotment plots, transition city initiatives, and commercial urban farms. A central challenge today is the reintegration of productive agriculture into urban planning, despite its historical presence in city landscapes. Land-use changes, particularly soil sealing due to urban expansion, have detrimental effects on soil health, hydrological cycles, and biodiversity. In industrialized nations, agricultural land has declined due to competing demands for urban development, industrial zones, infrastructure, and protected natural areas. Edible parks offer a strategic response by enabling food production within city boundaries while preserving existing urban agricultural lands. In doing so, they reinforce the role of green infrastructure as a cornerstone of sustainable urban development.

Keywords

Main Subjects


Aburi, I. M. (2012). Nature and sources of agricultural information and preferred channels of communication to smallholder commercial broiler farmers: a case of Ruiru district of Kenya (Doctoral dissertation). http://erepository.uonbi.ac.ke/handle/11295/14458
Ackerman, K., Conard, M., Culligan, P., Plunz, R., Sutto, M.P., Whittinghill, L., (2014). Sustainable food systems for future cities: the potential of urban agriculture. Econ. Soc. Rev. (Irel.) 45 (2), 189–206. http://www.esr.ie/issue/archive.
Adepoju, S. A., Oyefolahan, I. O., Abdullahi, M. B., & Mohammed, A. A. (2020). Multi-criteria decision-making based approaches in website quality and usability evaluation: a systematic review. http://repository.futminna.edu.ng:8080/jspui/handle/123456789/11119
Agriculture, Ecosystems and Environment 242 (2017) 53–66 agriculture/en/.
Ahern, J., Cilliers, S., Niemelä, J., (2014). The concept of ecosystem services in adaptive urban planning and design: a framework for supporting innovation. Landsc. Urban Plan. 125, 254–259. http://dx.doi.org/10.1016/j.landurbplan.2014.01.020.
Akiner, M. E., Akiner, I., & Akiner, N. (2023). Exploring the Emerging Evolution Trends of Urban Agriculture: A Systematic Literature Review. Handbook of Research on Managing the Urban-Rural Divide Through an Inclusive Framework, 89-107. https://avesis.akdeniz.edu.tr/yayin/26885492-45c9-4777-a1ce-b70a3a1d2ba4/exploring-the-emerging-evolution-trends-of-urban-agriculture-a-systematic-literature-review
Akiner, N. (2023). Muhammed Ernur Akiner Akdeniz University, Turkey ilknur Akiner Akdeniz University, Turkey. http://10.4018/978-1-6684-6258-4.ch006     
Alaimo, K., Packnett, E., Miles, R.A., Kruger, D.J.,(2008). Fruit and vegetable intake among urban community gardeners. J. Nutr. Educ. Behav. 40 (2), 94–10. http://dx.doi.org/ 10.1016/j.jneb.2006.12.003      
Al-Kodmany, K., (2014). Green towers and iconic design: cases from three continents. Archnet-IJAR Int. J. Archit. Res. 8 (1), 11–28. http://10.26687/archnet-ijar.v8i1.336
Alloway, T. P., Gathercole, S. E., Willis, C., & Adams, A. M. (2004). A structural analysis of working memory and related cognitive skills in young children. Journal of experimental child psychology, 87(2), 85-106. https://doi.org/10.1016/j.jecp.2003.10.002
Apostolides, E., Papafotiou, M., Vissilia, A.-M., Paraskevopoulou, A., (2015). Gardens and orchards of Kampos’ historical country mansions in Chios: an early trace of landscape architecture in Greece. Stud. Hist. Gard. Des. Landsc. 35 (4), 290–311. http://dx.doi. Org/10.1080/14601176.2015.1035553.  
Arizaga, F. J., Ramirez, J. M., Alcalá, J. A., Rojas, A. G., & Sabory, R. A. (2024). Analysis of Losses in a Three-Port High-Frequency Transformer Under Different Frequencies and Load Conditions. DOI: 10.21203/rs.3.rs-3894774/v1
Artmann, M., Sartison, K., & Vávra, J. (2020). The role of edible cities supporting sustainability transformation–A conceptual multi-dimensional framework tested on a case study in Germany. Journal of Cleaner Production, 255, 120220. https://doi.org/10.1016/j.jclepro.2020.120220
Barati, E. (2022). An Analysis of the Perspectives and Theories on Ecological Urbanism Approach. Green Development Management Studies, 1(2), 73-90. Doi: 10.22077/jgmd.2023.5957.1013 (In Persian)
Barthel, S., & Isendahl, C. (2013). Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecological economics, 86, 224-234. https://doi.org/10.1016/j.ecolecon.2012.06.018
Barthel, S., Folke, C., & Colding, J. (2010). Social-ecological memory in urban gardens—Retaining the capacity for management of ecosystem services. Global environmental change, 20(2), 255-265. https://doi.org/10.1016/j.gloenvcha.2010.01.001
Beatley, T. (2011). Biophilic cities: integrating nature into urban design and planning. Island Press. https://books.google.com/books/about/Biophilic_Cities.html?id=bzdoJhsLUM0C
Beatley, T. (2017). Biophilic cities and healthy societies. Urban planning, 2(4), 1-4. DOI: https://doi.org/10.17645/up.v2i4.1054
Belcher, B., Michon, G., Angelsen, A., Ruiz Pérez, M., Asbjornsen, H., (2005). The socioeconomic conditions determining the development, persistence, and decline of forest garden systems. Econ. Bot. 59 (3), 245–253. http://dx.doi.org/10.1663/0013- 0001    
Bell, Simon. (1382). Perception model perspective, translation: Behnaz Aminzad. Tehran: University of Tehran.(In persian)
Bhat, C., & Paschapur, A. (2020). Urban agriculture: the saviour of rapid urbanization. Indian farmer, 7(01), 01-09.
Bimantio, M. P., Ferhat, A., Putra, D. P., Nugraha, N. S., Ayu, I. K., & Suendra, A. (2024). Assessing the Potential of Prambanan Biodiversity Park for Sustainable Food Resources and Agriculture in Kemudo, Klaten, Central Java. Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati, 23-30. DOI: https://doi.org/10.24002/biota.v9i1.8182
Breuste, J., Artmann, M., Li, J., & Xie, M. (2015). Special issue on green infrastructure for urban sustainability. Journal of Urban Planning and Development, 141(3), A2015001. DOI:10.1061/(ASCE)UP.1943-5444.0000291
Breuste, J.H., Artmann, M., Li, J., Xie, M., (2015). Special issue on green infrastructure for urban sustainability. J. Urban Plan. Dev. 141 (3), A2015001. http://dx.doi.org/10. 1061/(ASCE)UP.1943-5444.0000291 
Cavallo, A., Di Donato, B., Guadagno, R., & Marino, D. (2015). Cities, agriculture and changing landscapes in urban milieu: The case of Rome. RIVISTA DI STUDI SULLA SOSTENIBILITA’, (2015/1). DOI:10.3280/RISS2015-001006
Chen, Z., Liu, Q., Li, M., & Xu, D. (2024). A New Strategy for Planning Urban Park Green Spaces by Considering Their Spatial Accessibility and Distributional Equity. Forests, 15(3), 570. https://doi.org/10.3390/f15030570
Clark, K.H., Nicholas, K.A., (2013). Introducing urban food forestry: a multifunctional approach to increase food security and provide ecosystem services. Landsc. Ecol. 28 (9), 1649–1669. http://dx.doi.org/10.1007/s10980-013-9903-z.
Corazon, S.S., Stigsdotter, U.K., Moeller, M.S., Rasmussen, S.M., (2012). Nature as therapist: integrating permaculture with mindfulness- and acceptance-based therapy in the Danish Healing Forest Garden Nacadia. Eur. J. Psychother. Couns. 14 (4), 335–347. http://dx.doi.org/10.1080/13642537.2012.734471 .
Coronel, S.A., Feldman, R.S., Jozami, E., Facundo, K., Piacentini, D.R., Dubbeling, M., Escobedo, J.F.,( 2015). Effects of urban green areas on air temperature in a medium- sized Argentinian city. AIMS Environ. Sci. 2 (3), 803–826. http://dx.doi.org/10. 3934/environsci.2015.3.803.
Donaldson, J.S.,( 2009). Botanic gardens science for conservation and global change. Trends Plant Sci. 14 (11), 608–613. http://dx.doi.org/10.1016/j.tplants.2009.08. 008.
Duarte, D. H., Shinzato, P., dos Santos Gusson, C., & Alves, C. A. (2015). The impact of vegetation on urban microclimate to counterbalance-built density in a subtropical changing climate. Urban Climate, 14, 224-239. https://doi.org/10.1016/j.uclim.2015.09.006
Elmqvist, T., Andersson, E., Frantzeskaki, N., McPhearson, T., Olsson, P., Gaffney, O.,... & Folke, C. (2019). Sustainability and resilience for transformation in the urban century. Nature Sustainability, 2(4), 267-273. https://doi.org/10.1038/s41893-019-0250-1
Eskandari sani, M., Alizadeh hey hey, M., & Rezaeinasab, A. (2023). Analyzing the social effects of the development of urban green space in Qochan. Green Development Management Studies, 2(2), 88-102. Doi: 10.22077/jgmd.2023.6669.1039(In Persian)
European Commission. (2011). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Youth Opportunities Initiative.‌
European Commission. “Nature‐based solutions & re‐ naturing cities.” Final report of the Horizon 2020 Expert Group on nature-based solutions & re-naturing cities (2015) https://networknature.eu/nbs-resource/25150
FAO, 2016. Urban Agriculture.  (2016) http://www.fao.org/urban
Ferrario, V., & D’Angelo, F. (2024). Mapping multifunctional agro-urban landscape to manage edible cities in North-Eastern Italy. In Urban Food Mapping (pp. 64-75). Routledge. DOI: 10.4324/9781003352280-7
Fleszar, E., Gwardys-Szczesna, S., (2009). The school gardens in preserving biological diversity for education. Bulg. J. Sci. Educ. Policy 3 (2), 216–232.
Francis, R.A., Lorimer, J., (2011). Urban reconciliation ecology: the potential of living roofs and walls. J. Environ. Manag. 92, 1429–1437. http://dx.doi.org/10.1016/j.jenvman. 2011.01.012 .
Goddard, M. A., Dougill, A. J., & Benton, T. G. (2010). Scaling up from gardens: biodiversity conservation in urban environments. Trends in ecology & evolution, 25(2), 90-98. https://doi.org/10.1016/j.tree.2009.07.016
Golden, H. E., & Hoghooghi, N. (2018). Green infrastructure and its catchment‐scale effects: an emerging science. Wiley Interdisciplinary Reviews: Water, 5(1), e1254. https://doi.org/10.1002/wat2.1254
Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological economics, 86, 235-245. https://doi.org/10.1016/j.ecolecon.2012.08.019
Gómez-Baggethun, E., Barton, D. N., Berry, P., Dunford, R., & Harrison, P. A. (2016). Concepts and methods in ecosystem services valuation. Routledge handbook of ecosystem services, 99-111. https://www.taylorfrancis.com/chapters/edit/10.4324/9781315775302-9/concepts-methods-ecosystem-services-valuation-erik-g%C3%B3mez-baggethun-david-barton-pam-berry-robert-dunford-paula-harrison
Habitat, U. N. (2013). State of the world’s cities 2012/2013: Prosperity of cities. Routledge. https://unhabitat.org/prosperity-of-cities-state-of-the-worlds-cities-20122013
Hajzeri, A., & Kwadwo, V. O. (2019). Investigating integration of edible plants in urban open spaces: Evaluation of policy challenges and successes of implementation. Land use policy, 84, 43-48. DOI:10.1016/j.landusepol.2019.02.029
Hall, S. (1993). Culture, community, nation. Cultural studies, 7(3), 349-363. DOI:10.1080/09502389300490251  
Hojjat Shmami, S., & Javan, F. (2022). Ecotourism and Environmental Sustainability in Rural Areas of Rudbar. Green Development Management Studies, 1(2), 59-72. Doi: 10.22077/jgmd.2023.6082.1018 (In Persian)
Inostroza, L., & Taubenböck, H. (2024). Searching for the DNA of rbanization. A material perspective. Cities, 151, 105079 https://doi.org/10.1016/j.cities.2024.105079
Ives, C. D., Giusti, M., Fischer, J., Abson, D. J., Klaniecki, K., Dorninger, C.,... & von Wehrden, H. (2017). Human–nature connection: a multidisciplinary review. Current opinion in environmental sustainability, 26, 106-113. 10.1016/j.cosust.2017.05.005
Karakounos, I., Dimoudi, A., & Zoras, S. (2018). The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy and Buildings, 158, 1266-1274. https://doi.org/10.1016/j.enbuild.2017.11.035
Kumar, B.M., Nair, P.K.R.,( 2004). The enigma of tropical homegardens. Agrofor. Syst. 61–62 (1–3), 135–152. http://dx.doi.org/10.1023/B:AGFO.0000028995.13227.ca .
Lafontaine-Messier, M., Gélinas, N., Olivier, A., (2016) .Profitability of food trees planted in urban public green areas. Urban For. Urban Green. 16, 197–207. http://dx.doi.org/ 10.1016/j.ufug.2016.02.013  
Langemeyer, J., Madrid-Lopez, C., Beltran, A. M., & Mendez, G. V. (2021). Urban agriculture—A necessary pathway towards urban resilience and global sustainability?. Landscape and Urban Planning, 210, 104055. DOI: 10.1016/j.landurbplan.2021.104055
Lee, H., & Mayer, H. (2016). Validation of the mean radiant temperature simulated by the Rayman software in urban environments. International journal of biometeorology, 60(11), 1775-1785. https://doi.org/10.1007 / s00484-016-1166-3.
Li, Z., Ma, Q., Wang, Y., Shi, F., Jiang, H., & He, C. (2024). Study on the Structure, Efficiency, and Driving Factors of an Eco-Agricultural Park Based on Emergy: A Case Study of Jinchuan Eco-Agricultural Park. Sustainability, 16(7), 3060. https://doi.org/10.3390/su16073060
Luo, G., Zhang, Y., Etxeberria, J., Arnold, M., Cai, X., Hao, Y., & Zou, H. (2023). Projections of lung cancer incidence by 2035 in 40 countries worldwide: population-based study. JMIR public health and surveillance, 9(1), e43651. DOI: 10.2196/43651
Masheula, A. (2023). Assessment of Urban Parks using Green City Index in Metropolitan Cities, Gauteng, South Africa (Doctoral dissertation, University of Johannesburg).‌
Mathew, M. S., Kolhe, M. L., Kandukuri, S. T., & Omlin, C. W. (2023). Data driven approach for the management of wind and solar energy integrated electrical distribution network with high penetration of electric vehicles. Journal of Cleaner Production, 421, 138467. https://doi.org/10.1016/j.jclepro.2023.138467
McCormick, K., Anderberg, S., Coenen, L., & Neij, L. (2013). Advancing sustainable urban transformation. Journal of Cleaner Production, 50, 1-11. https://doi.org/10.1016/j.jclepro.2013.01.003
McLain, R., Poe, M., Hurley, P.T., Lecompte-Mastenbrook, J., Emery, M.R., (2012). Producing edible landscapes in Seattle’s urban forest. Urban For. Urban Green. 11 (2), 187–194. http://dx.doi.org/10.1016/j.ufug.2011.12.002.
Miccoli, S., Fabrizio, F., & Murro, R. (2015). A new generation of urban areas. Feasibility elements. In Advances in Energy Science and Equipment Engineering (pp. 1146-1149). Taylor & Francis Group.‌
Mullaney, J., Lucke, T., Trueman, S.J., 2015. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166. http://dx.doi.org/10.1016/j.landurbplan.2014.10.013.
Niemelä, J., Saarela, S.-R., Söderman, T., Kopperoinen, L., Yli-Pelkonen, V., Väre, S., Kotze, D.J., (2010). Using the ecosystem services approach for better planning and conservation of urban green spaces: a Finland case study. Biodivers. Conserv. 19 (11), 3225–3243. http://dx.doi.org/10.1007/s10531-010-9888-8.
Nobar, Zahra )2022(. The role of Edible parks in urban sustainability (case study: Tabriz city), Master’s thesis, Tabriz University
Opoku, A., Amudjie, J., Yahia, M. W., & Kumah, V. M. A. (2024). Urban green spaces for urban farms and the sustainable development goals. In The Elgar Companion to the Built Environment and the Sustainable Development Goals (pp. 104-120). Edward Elgar Publishing. https://doi.org/10.4337/9781035300037.00015
Opoku, R. K. (2024). Green manufacturing, supply chain alertness, supply chain preparedness and manufacturing performance in a developing economy. Journal of Manufacturing Technology Management. https://doi.org/10.1108/JMTM-02-2024-0105
Pulighe, G., & Lupia, F. (2016). Mapping spatial patterns of urban agriculture in Rome (Italy) using Google Earth and web-mapping services. Land use policy, 59, 49-58. DOI: 10.1016/j.landusepol.2016.08.001
Qiu, G. Y., Li, H. Y., Zhang, Q. T., Wan, C. H. E. N., Liang, X. J., & Li, X. Z. (2013). Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. Journal of Integrative Agriculture, 12(8), 1307-1315. DOI: 10.1016/S2095-3119(13)60543-2
Rahimi, A. (2014). Modeling of Tabriz Expansion in 2031 using Land Transformation model. Journal of Urban Ecology Researches, 5(10), 99-110. DIO: 20.1001.1.25383930.1393.5.10.6.6
Rahimi, A., & Nobar, Z. (2023). The impact of planting scenarios on agricultural productivity and thermal comfort in urban agriculture land (case study: Tabriz, Iran). Frontiers in Ecology and Evolution, 11, 1048092. https://doi.org/10.3389/fevo.2023.1048092
Rahimi, A., & Nobar, Z.(2024) Investigating the Role of Cover Plants (grass) in Improving the Physiological Equivalent Temperature and Relative Humidity (Case Study: Tabriz University Stadium). DIO:10.22034/saps.2023.53515.2930
Rezaei, Ruholah, and Mousavian, Amina. (2013). Identifying the areas of application of information and communication technology by master’s students in agricultural fields of Zanjan University. Agricultural Extension and Education Research, 7(1 (25)), 65-80. SID. (In Persian) https://sid.ir/paper/189798/fa
Romano, A. (2024). Exploring the impact of open innovation on companies’ financial performances: a focus on the Italian market. https://hdl.handle.net/2077/82461
Russo, A., & Cirella, G. T. (2020). Edible green infrastructure for urban regeneration and food security: case studies from the Campania region. Agriculture, 10(8), 358. https://doi.org/10.3390/agriculture10080358
Sadr Mousavi, Mirstar, and Rahimi, Akbar(2009). The application of artificial neural networks in prediction of. Iranian Journal of Natural Resources (Not Published), 61(4)
Salafsky, N., (1994). Forest gardens in the gunung palung region of West Kalimanta, Indonesia. Agrofor. Syst. 28 (3), 237–268. http://dx.doi.org/10.1007/BF00704759.
Salata, F., Golasi, I., de Lieto Vollaro, R., & de Lieto Vollaro, A. (2016). Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society, 26, 318-343. https://doi.org/10.1016/j.scs.2016.07.005
Saldivar-tanaka, L., Krasny, M.E., (2004). Culturing community development, neighborhood open space, and civic agriculture: the case of Latino community gardens in New York City. Agric. Hum. Values 21 (4), 399–412. http://dx.doi.org/10. 1007/s10460-003-1248-9.
Samsøe-Petersen, L., Larsen, E.H., Larsen, P.B., Bruun, P., (2002). Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ. Sci. Technol. 36 (14), 3057–3063. http://dx.doi.org/10.1021/es015691t.
Samson, D. R., Manus, M. B., Krystal, A. D., Fakir, E., Yu, J. J., & Nunn, C. L. (2017). Segmented sleep in a nonelectric, small‐scale agricultural society in Madagascar. American Journal of Human Biology, 29(4), e22979. DOI: 10.1002/ajhb.22979
Sartison, K., & Artmann, M. (2020). Edible cities–An innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities. Urban Forestry & Urban Greening, 49, 126604. https://doi.org/10.1016/j.ufug.2020.126604
Säumel, I., Kotsyuk, I., Hölscher, M., Lenkereit, C., Weber, F., Kowarik, I., (2012). How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ. Pollut. 165, 124–132. http://dx.doi.org/10.1016/j.envpol.2012.02.019.
Säumel, I., Reddy, S. E., & Wachtel, T. (2019). Edible city solutions—one step further to foster social resilience through enhanced socio-cultural ecosystem services in cities. Sustainability, 11(4), 972. https://doi.org/10.3390/su11040972
Scherr, S.J., Shames, S., Friedman, R.,( 2012). From climate-smart agriculture to climate- smart landscapes. Agric. Food Secur. 1 (1), 12. http://dx.doi.org/10.1186/2048- 7010-1-12 .
sequestration of various green roof and ornamental landscape systems. Landsc. Urban Plan. 123, 41–48. http://dx.doi.org/10.1016/j.landurbplan.2013.11.015.
Singh, R., Verma, P., Singh, V. K., Srivastava, P., & Kumar, A. (2022). Urban ecology and climate change: challenges and mitigation strategies. Urban Ecology and Global Climate Change, 1-29. DOI:10.1002/9781119807216.ch1
Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J. D.,... & Daly, M. J. (2022). Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 604(7906), 509-516. DOI: 10.1038/s41586-022-04556-w
SITES v2 Rating System For Sustainable Land Design and Development [WWW Document] http://www.sustainablesites.org/resources
Skelly, S.M., Bradley, J.C., (2007). The growing phenomenon of school gardens: measuring their variation and their affect on students’ sense of responsibility and attitudes toward science and the environment. Appl. Environ. Educ. Commun. 6 (1), 97–104. http://dx.doi.org/10.1080/15330150701319438 .
Soga, M., Gaston, K. J., & Yamaura, Y. (2017). Gardening is beneficial for health: A meta-analysis. Preventive medicine reports, 5, 92-99. https://doi.org/10.1016/j.pmedr.2016.11.007
Speak, A.F., Mizgajski, A., Borysiak, J., (2015). Allotment gardens and parks: provision of ecosystem services with an emphasis on biodiversity. Urban For. Urban Green. 14 (4), 772–781. http://dx.doi.org/10.1016/j.ufug.2015.07.007.
Srinivasulu, A., Zeale, M. R., Srinivasulu, B., Srinivasulu, C., Jones, G., & González‐Suárez, M. (2024). Future climatically suitable areas for bats in South Asia. Ecology and Evolution, 14(5), e11420. https://doi.org/10.1002/ece3.11420
Srinivasulu, K. (2024). Nationalism and Dynamics of Federal Politics in Contemporary India. Indian Journal of Public Administration, 70(1), 196-209. https://doi.org/10.1177/00195561231204608
Syme, G.J., Shao, Q., Po, M., Campbell, E., (2004). Predicting and understanding home garden water use. Landsc. Urban Plan. 68 (1), 121–128. http://dx.doi.org/10.1016/j. landurbplan.2003.08.002.
Tornaghi, C. (2014). Critical geography of urban agriculture. Progress in Human Geography, 38(4), 551-567. https://doi.org/10.1177/0309132513512542
Tóth, A., & Timpe, A. (2017). Exploring urban agriculture as a component of multifunctional green infrastructure: Application of figure-ground plans as a spatial analysis tool. Moravian Geographical Reports, 25(3), 208-218. DOI: 10.1515/mgr-2017-0018
TSOATA, E., & TEMEGNE, C. N. plants for their tolerance to drought stress”. International Journal of Keywords. https://doi.org/10.3390/plants12112170
Valizadeh, Reza, and Dadash Pourmoghadam, Majid. (2018). Urban design and planning methods for sustainable development. Shabak, 5(7 (series 46)), 49-60. SID. (In persian) https://sid.ir/paper/520199/fa
Varzakas, Theodoros, and Slim Smaoui. (2024). “Global Food Security and Sustainability Issues: The Road to 2030 from Nutrition and Sustainable Healthy Diets to Food Systems Change” Foods 13, no. 2: 306. https://doi.org/10.3390/foods13020306  
Viljoen, K. S., Schulze, D. J., & Quadling, A. G. (2005). Contrasting group I and group II eclogite xenolith petrogenesis: petrological, trace element and isotopic evidence from eclogite, garnet-websterite and alkremite xenoliths in the Kaalvallei kimberlite, South Africa. Journal of Petrology, 46(10), 2059-2090. https://doi.org/10.1093/petrology/egi047
Wakefield, S., Yeudall, F., Taron, C., Reynolds, J., Skinner, A., (2007). Growing urban health: community gardening in South-East Toronto. Health Promot. Int. 22 (2),92–101. http://dx.doi.org/10.1093/heapro/dam001.
Wang, Y., Bakker, F., de Groot, R., Wörtche, H., (2014). Effect of ecosystem services provided by urban green infrastructure on indoor environment: a literature review. Build. Environ. 77, 88–100. http://dx.doi.org/10.1016/j.buildenv.2014.03.021.
Wang, Y., Jodoin, P. M., Porikli, F., Konrad, J., Benezeth, Y., & Ishwar, P. (2014). Cdnet (2014): An expanded change detection benchmark dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 387-394). DOI: 10.1109/CVPRW.2014.126
Wansink, B., Hanks, A.S., Just, D.R., (2015). A plant to plate pilot: a cold-climate high school garden increased vegetable selection but also waste. Acta Paediatr. 104 (8), 823–826. http://dx.doi.org/10.1111/apa.13028.
Ward, C.D., Parker, C.M., Shackleton, C.M., (2010). The use and appreciation of botanical gardens as urban green spaces in South Africa. Urban For. Urban Green. 9 (1), 49–55. http://dx.doi.org/10.1016/j.ufug.2009.11.001.
Warming, M., Hansen, M.G., Holm, P.E., Magid, J., Hansen, T.H., Trapp, S., (2015). Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ. Pollut. 202, 17–23. http://dx.doi.org/10.1016/j.envpol. 2015.03.011. 
Whittinghill, L.J., Rowe, D.B., (2012). The role of green roof technology in urban agriculture. Renew. Agric. Food Syst. 27 (4), 314–322. http://dx.doi.org/10.1017/ S174217051100038X   
Whittinghill, L.J., Rowe, D.B., Andresen, J.A., Cregg, B.M., (2014). Comparison of stormwater runoff from sedum, native prairie, and vegetable producing green roofs. https://doi.org/10.1007/s11252-014-0386-8
Whittinghill, L.J., Rowe, D.B., Cregg, B.M.,( 2013). Evaluation of vegetable production on extensive green roofs. Agroecol. Sustain. Food Syst. 37 (4), 465–484 https://doi.org/10.1080/21683565.2012.756847.
Wiersum, K.F., (2004). Forest gardens as an intermediate land-use system in the nature–culture continuum: characteristics and future potential. Agrofor. Syst. 61–62, 123–134. http://dx.doi.org/10.1023/B:AGFO.0000028994.54710.44.
Williamson, K. S. (2003). Growing with green infrastructure. Doylestown, PA: Heritage Conservancy.‌
Wiltshire, R., Azuma, R., 2000. Rewriting the plot: sustaining allotments in the UK and Japan. Local Environ. 5 (2), 139–151. http://dx.doi.org/10.1080/ 13549830050009319.
Wood, C.J., Pretty, J., Griffin, M., (2016). A case–control study of the health and well-being benefits of allotment gardening. J. Public Health 38 (3), e336–e344. http://dx.doi. Org/10.1093/pubmed/fdv146.
Ye, J., Liu, C., Zhao, Z., Li, Y., Yu, S., (2013). Heavy metals in plants and substrate from simulated extensive green roofs. Ecol. Eng. 55 (2), 29–34. http://dx.doi.org/10. 1016/j.ecoleng.2013.02.012.
Yuan, J., Emura, K., & Farnham, C. (2017). Is urban albedo or urban green covering more effective for urban microclimate improvement?: A simulation for Osaka. Sustainable Cities and Society, 32, 78-86. https://doi.org/10.1016/j.scs.2017.03.02
Zare Abandansari, M., Naghizadeh Baghi, A., & Naghizadeh Baghi, M. (2023). Identifying sustainable development solutions and green management in designing football stadiums. Green Development Management Studies, 2(2), 16-24. Doi: 10.22077/jgdms.2024.7114.1060(In Persian)
Zezza, A., Tasciotti, L., (2010). Urban agriculture, poverty, and food security: empirical evidence from a sample of developing countries. Food Policy 35 (4), 265–273. http:// dx.doi.org/10.1016/j.foodpol.2010.04.007.
Zhang, H., Jim, C.Y., (2014). Species diversity and performance assessment of trees in domestic gardens. Landsc. Urban Plan. 128, 23–34. http://dx.doi.org/10.1016/j. landurbplan.2014.04.017 .
Zhang, L., Zhan, Q., & Lan, Y. (2018). Effects of the tree distribution and species on outdoor environment conditions in hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment, 130, 27-39. https://doi.org/10.1016/j.buildenv.2017.12.014.
Zhao, J., Zhou, Y., Li, Z., Wang, W., & Chang, K. W. (2018). Learning gender-neutral word embeddings. arXiv preprint arXiv:1809.01496. https://doi.org/10.48550/arXiv.1809.01496
Zhao, Q., Sailor, D. J., & Wentz, E. A. (2018). Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban Forestry & Urban Greening, 32, 81-91. https://doi.org/10.1016/j.ufug.2018.03.022
Zhao, Y., Li, B., Li, C., Xu, Y., Luo, Y., Liang, D., & Huang, C. (2021). Comprehensive review of polysaccharide-based materials in edible packaging: A sustainable approach. Foods, 10(8), 1845. https://doi.org/10.3390/foods10081845