Designing a closed loop supply chain network with a sustainability and reliability approach

Document Type : Original Article

Authors

1 Ph.D in Industrial Management, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran

2 Professor, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran.

3 Professor, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran.

Abstract

The competitive environment of today has focused the attention of organizations on meeting the requirements of quality and social responsibility. Because organizations that adhere to the quality management framework achieve a higher level of customer satisfaction. To consider the convergence between sustainability and reliability, an economic, responsible, and reliable supply chain network design model has been comprehensively and efficiently modeled. In this article, a non-linear mixed integer programming model is considered for the design problem of the supply chain network in the form of three objectives, multi-product, multi-level, multi-source, multi-capacity, and multi-stage. The Pareto optimal solutions of the proposed model have been obtained using the evolved epsilon constraint (AEC) method. In addition, a numerical example with random data has been used to measure the accuracy and overall performance of the proposed model. The results showed that the profit value of the problem increases with the increase of the demand parameter. At the same time, reliability and social responsibility decrease. In addition, with the increase in greenhouse gas emissions, the value of the objective function of profit and social responsibility decreases, while the value of the objective function of reliability remains almost constant. Achieving synergy between sustainability and reliability in the design of the supply chain network requires the development of more detailed and long-term guidelines.

Keywords


  • اسکندری‌ثانی، محمد و سفالگر، سحر (1401)، ادغام اقتصاد سبز و چرخشی، رویکرد نوین درآمد پایدار در شهر بیرجند. نشریه مدیریت سبز و توسعه، 1 (2)، ص 159-172. https://doi.org/10.22077/jgmd.2023.6171.1023
  • امیریان، سجاد، امیری، مقصود و تقوی فرد، محمدتقی (1402)، ادغام پایداری و قابلیت اطمینان در زنجیره تأمین: مرور سیستماتیک ادبیات. نشریه علمی مدیریت زنجیره تأمین، 25 (78)، ص 1-28. https://dorl.net/dor/20.1001.1.20089198.1402.25.79.8.2
  • پاشایی، پارسا، شاطری، مفید و اشرفی، علی (1401)، تحلیل پروژه‌های محیط زیستی اجرا شده در شرکت پالایشگاه گاز فجر جم. نشریه مدیریت سبز و توسعه، 1 (2)، ص 13-26. https://doi.org/10.22077/jgmd.2023.6102.1019
  • Ahi, P., & Searcy, C. (2015). An analysis of metrics used to measure performance in green and sustainable supply chains. Journal of cleaner production, 86, 360-377. https://doi.org/10.1016/j.jclepro.2014.08.005
  • Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, 37(6), 4165-4176. https://doi.org/10.1016/j.apm.2012.09.039
  • Amirian, S., Amiri, M., & Taghavifard, M. T. (2022a). The Emergence of a Sustainable and Reliable Supply Chain Paradigm in Supply Chain Network Design. Complexity, 2022. https://doi.org/10.1155/2022/9415465
  • Amirian, S., Amiri, M., & Taghavifard, M. T. (2022b). Sustainable and reliable closed-loop supply chain network design: Normalized Normal Constraint (NNC) method application. Journal of Industrial and Systems Engineering, 14(3), 33-68. https://dorl.net/dor/20.1001.1.17358272.2022.14.3.2.1
  • Athikulrat, K., Rungreanganun, V., & Talabgaew, S. (2015). Reliability assessment on member of supply chain based on SCOR performance and fault tree analysis. International Journal of Computer Science and Electronics Engineering, 3(2), 107-111. https://dokumen.tips/documents/reliability-assessment-on-member-of-supply-chain-based-on-are-essential-for.html
  • Barros, R. D. C., Sampaio, M., & Correa, J. S. (2019). Impact of the inclusion of variable CO 2 cost in the distribution network design. Production, 29. https://doi.org/10.1590/0103-6513.20190065
  • Basu, D., & Lee, M. (2022). A combined sustainability-reliability approach in geotechnical engineering. In Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering (pp. 379-413). Elsevier. http://dx.doi.org/10.1016/B978-0-323-85698-0.00029-0
  • Chopra, S., & Meindl, P. (2007). Supply chain management. Strategy, planning & operation. In Das summa summarum des management (pp. 265-275). Gabler. https://doi.org/10.1007/978-3-8349-9320-5_22
  • Esmizadeh, Y., & Mellat Parast, M. (2021). Logistics and supply chain network designs: incorporating competitive priorities and disruption risk management perspectives. International Journal of Logistics Research and Applications, 24(2), 174-197. https://doi.org/10.1080/13675567.2020.1744546
  • Fazli-Khalaf, M., Naderi, B., Mohammadi, M., & Pishvaee, M. S. (2020). Design of a sustainable and reliable hydrogen supply chain network under mixed uncertainties: A case study. International Journal of Hydrogen Energy, 45(59), pp. 34503-34531. http://dx.doi.org/10.1016/j.ijhydene.2020.05.276
  • Foong, S. Z., & Ng, D. K. (2022). A systematic approach for synthesis and optimisation of sustainable oil palm value chain (OPVC). South African Journal of Chemical Engineering, 41, 65-78. https://discovery.researcher.life/article/a-systematic-approach-for-synthesis-and-optimisation-of-sustainable-oil-palm-value-chain-opvc/9f21db8ddbd732879d590f2c871eb5d5
  • Galaitsi, S. E., Keisler, J. M., Trump, B. D., & Linkov, I. (2021). The need to reconcile concepts that characterize systems facing threats. Risk Analysis, 41(1), 3-15. https://doi.org/10.1111/risa.13577
  • Gao, Y., Li, J., & Song, Y. (2009, August). Performance evaluation of green supply chain management based on membership conversion algorithm. In 2009 ISECS international colloquium on computing, communication, control, and management (Vol. 3, pp. 237-240). https://doi.org/10.1109/CCCM.2009.5267895
  • Ghayebloo, S., Tarokh, M. J., Venkatadri, U., & Diallo, C. (2015). Developing a bi-objective model of the closed-loop supply chain network with green supplier selection and disassembly of products: the impact of parts reliability and product greenness on the recovery network. Journal of Manufacturing Systems, 36, 76-86. http://dx.doi.org/10.1016/j.jmsy.2015.02.011
  • Giunipero, L. C., & Eltantawy, R. A. (2004). Securing the upstream supply chain: a risk management approach. International Journal of Physical Distribution & Logistics Management. 34(9), 698-713 http://dx.doi.org/10.1108/09600030410567478
  • Gottberg, A., Morris, J., Pollard, S., Mark-Herbert, C., & Cook, M. (2006). Producer responsibility, waste minimisation and the WEEE Directive: Case studies in eco-design from the European lighting sector. Science of the total environment, 359(1-3), 38-56. https://doi.org/10.1016/j.scitotenv.2005.07.001
  • Goudarzi, Z., Seifbarghy, M., & Pishva, D. (2022). Bi-objective modeling of a closed-loop multistage supply chain considering the joint assembly center and reliability of the whole chain. Journal of Industrial and Production Engineering, 39(3), 230-252. http://dx.doi.org/10.1080/21681015.2021.1974109
  • Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), pp.108-141. https://doi.org/10.1016/j.ejor.2017.04.009
  • Govindan, K., Mina, H., & Alavi, B. (2020). A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transportation Research Part E: Logistics and Transportation Review, 138, 101967. https://doi.org/10.1016/j.tre.2020.101967
  • Grishko, A., Adnreev, P., Goryachev, N., Trusov, V., & Danilova, E. (2018, May). Reliability control of complex systems at different stages of their life cycle. In 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) (pp. 220-223). IEEE. http://dx.doi.org/10.1109/USBEREIT.2018.8384589
  • Hagspiel, V., Huisman, K. J., & Kort, P. M. (2016). Volume flexibility and capacity investment under demand uncertainty. International Journal of Production Economics, 178, 95-108. https://doi.org/10.1016/j.ijpe.2016.05.007
  • Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making—methods and applications: a state-of-the-art survey (Vol. 164). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-3-642-45511-7
  • Kabadurmus, O., & Erdogan, M. S. (2020). Sustainable, multimodal and reliable supply chain design. Annals of Operations Research, 292(1), pp. 47-70. https://link.springer.com/article/10.1007/s10479-020-03654-0
  • Kamalahmadi, M., & Mellat-Parast, M. (2016). Developing a resilient supply chain through supplier flexibility and reliability assessment. International Journal of Production Research, 54(1), 302-321. http://dx.doi.org/10.1080/00207543.2015.1088971
  • Khalifehzadeh, S., Seifbarghy, M., & Naderi, B. (2015). A four-echelon supply chain network design with shortage: Mathematical modeling and solution methods. Journal of Manufacturing Systems, 35, 164-175. https://doi.org/10.1016/j.jmsy.2014.12.002
  • Khan, S. A. R., Zkik, K., Belhadi, A., & Kamble, S. S. (2021). Evaluating barriers and solutions for social sustainability adoption in multi-tier supply chains. International Journal of Production Research, 59(11), 3378-3397. https://doi.org/10.1080/00207543.2021.1876271
  • Kleverlaan, M. P. (2008). Supply chain performance. https://www.researchgate.net/publication/277162194_Supply_chain_performance
  • Li, Q., Loy-Benitez, J., Nam, K., Hwangbo, S., Rashidi, J., & Yoo, C. (2019). Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks. Energy, Vol. 178, pp. 277-292. https://doi.org/10.1016/j.energy.2019.04.114
  • Marchi, B., Zanoni, S., Zavanella, L. E., & Jaber, M. Y. (2019). Supply chain models with greenhouse gases emissions, energy usage, imperfect process under different coordination decisions. International Journal of Production Economics, Vol. 211, pp. 145-153. https://doi.org/10.1016/j.ijpe.2019.01.017
  • Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), pp. 455-465. https://doi.org/10.1016/j.amc.2009.03.037
  • Mavrotas, G., & Florios, K. (2013). An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 219(18), 9652-9669. https://doi.org/10.1016/j.amc.2013.03.002
  • Miao, X., Yu, B., & Xi, B. (2009). The uncertainty evaluation method of supply chain reliability. Transport, 24(4), 296-300. https://doi.org/10.3846/1648-4142.2009.24.296-300
  • Nosrati, M., & Khamseh, A. (2020). Reliability optimization in a four-echelon green closed-loop supply chain network considering stochastic demand and carbon price. Uncertain Supply Chain Management, 8(3), pp.457-472. http://dx.doi.org/10.5267/j.uscm.2020.5.002
  • Nurjanni, K. P., Carvalho, M. S., & Costa, L. (2017). Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. International Journal of Production Economics, Vol. 183, pp. 421-432. https://doi.org/10.1016/j.ijpe.2016.08.028
  • Ohmori, S., & Yoshimoto, K. (2013). A framework of managing supply chain disruption risks using network reliability. Industrial engineering and management systems, 12(2), 103-111. http://dx.doi.org/10.7232/iems.2013.12.2.103
  • Okwu, M. O., & Tartibu, L. K. (2020). Sustainable supplier selection in the retail industry: A TOPSIS-and ANFIS-based evaluating methodology. International journal of engineering business management, 12, 1847979019899542. http://dx.doi.org/10.1177/1847979019899542
  • Pagell, M., & Wu, Z. (2009). Building a more complete theory of sustainable supply chain management using case studies of 10 exemplars. Journal of supply chain management, 45(2), 37-56. https://doi.org/10.1111/j.1745-493X.2009.03162.x
  • Pereira, J. L. J., Oliver, G. A., Francisco, M. B., Cunha, S. S., & Gomes, G. F. (2021). A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Archives of Computational Methods in Engineering, 1-24. https://doi.org/10.1007/s11831-021-09663-x
  • Psarommatis, F., & May, G. (2022). A standardized approach for measuring the performance and flexibility of digital twins. International Journal of Production Research, 1-16. http://dx.doi.org/10.1080/00207543.2022.2139005
  • Rahmani, D., & Mahoodian, V. (2017). Strategic and operational supply chain network design to reduce carbon emission considering reliability and robustness. Journal of Cleaner Production, 149, 607-620. https://doi.org/10.1016/j.jclepro.2017.02.068
  • Samuel, C. N., Diallo, C., Venkatadri, U., & Ghayebloo, S. (2021). Multicomponent multiproduct closed-loop supply chain design with transshipment and economies of scale considerations. Computers & Industrial Engineering, 153, 107073. http://dx.doi.org/10.1016/j.cie.2020.107073
  • Sheffi, Y. (2007). The resilient enterprise: overcoming vulnerability for competitive advantage. Pearson Education India. https://mitpress.mit.edu/9780262693493/the-resilient-enterprise/
  • Singh, S., Kumar, R., Panchal, R., & Tiwari, M. K. (2021). Impact of COVID-19 on logistics systems and disruptions in food supply chain. International journal of production research, 59(7), 1993-2008. https://doi.org/10.1080/00207543.2020.1792000
  • Smith, D. J. (2021). Reliability, maintainability and risk: practical methods for engineers. Butterworth-Heinemann. https://www.amazon.com/Reliability-Maintainability-Risk-Practical-Engineers/dp/0323912613
  • Tirkolaee, E. B., Goli, A., Faridnia, A., Soltani, M., & Weber, G. W. (2020). Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. Journal of Cleaner Production, 276, 122927. https://doi.org/10.1016/j.jclepro.2020.122927
  • Vishnu, C. R., Sridharan, R., Gunasekaran, A., & Kumar, P. R. (2019). Strategic capabilities for managing risks in supply chains: current state and research futurities. Journal of Advances in Management Research, 17(2), 173-211. https://doi.org/10.1108/JAMR-04-2019-0061
  • Wang, R., Ke, C., & Cui, S. (2022). Product price, quality, and service decisions under consumer choice models. Manufacturing & Service Operations Management, 24(1), 430-447. http://dx.doi.org/10.1287/msom.2020.0947